General Principles of Pathophysiology

The Normal Cell

Homeostasis

Cellular & Tissue Response to Injury

Topics

- Discuss the structure and function of normal cells
- Describe the mechanisms for the general maintenance of homesostasis
- Discuss the general responses to injury

Cellular Functions

- Organization
- Metabolism
 - Catabolism
 - Anabolism
- Responsiveness
 - Conductivity
- Movement

- Reproduction
- Growth
- Differentiation
- Respiration
- Secretion
- Excretion

Cell Kingdoms

- Prokaryotes
 - bacteria
- Eukaryotes
 - plants, animals, fungi

Building Blocks of Life

- Amino Acids -> Proteins
 - Structure & Function
- Nucleic Acids -> DNA / RNA
 - Information Transmission, energy storage
- Simple Sugars -> Polysaccharides
 - Energy Sources, structure
- Fatty Acids -> Lipids
 - Structure, Energy Source

Human Genome as a Book

- There are 23 chapters, called CHROMOSOMES
- Each chapter contains several thousand stories, called GENES
- Each story is made up of paragraphs, called <u>EXONS</u>
- Each story is interrupted by advertisements called <u>INTRONS</u>
- Each paragraph is made up of words, called CODONS.
- Each word is written in letters called BASES

Cellular Components

- Phospholipid bilayer
- Membrane proteins
- Cytoplasm
- Nucleus
- Ribosomes

- Mitochondria
- Endoplasmic
 Riticulum
- Golgi Apparatus
- Lysosomes

Generic Eukaryotic Cell

System Integration

- Homeostasis
- Homeo = alike, same
- Stasis = always, staying

Energy Needs of Homeostasis

- Endothermic vs Exothermic Reactions
- Spontaneous vs Nonspontaneous Reactions
- 'Coupling'
- Metabolism
 - Catabolism
 - Anabolism

Feedback Loops

- Negative
 - Opposes a change
- Positive
 - Enhances a change

Feedback Loop Example

Methods of Communication

- Endocrine
 - Hormones
- Nervous
 - Neurotransmitters

Nervous

Endocrine

Wired Wireless Neurotransmitters Hormones Long Distance Short Distance Receptor Specificity Closeness Rapid Onset **Delayed Onset Short Duration** Prolonged Duration Rapid Response Regulation

Mechanism of Action

Synaptic Transmission

Nervous System

Autonomic Nervous System

Sympathetic

Parasympathetic

'Fight or Flight'

"Feed or Breed"

Activation

Restoration

Thoracolumbar

Craniosacral

Adrenergic

Cholinergic

Norepinephrine

Acetylcholine

Sympathetic Receptors

alpha

Constriction

(↑ Peripheral

Vascular

Resistance)

Inhibit further NE Discharge

beta

↑ Contractility

Automaticity (heart rate)

Bronchodilation Vasodilation

2

General Response to Injury

- Cellular Adaptation
- Mechanisms of Cell Injury
- Manifestations of Cell Injury
- Cellular Death

Cellular Adaptation

- Atrophy
- Hypertrophy
- Hyperplasia
- Dysplasia
- Metaplasia

Atrophy

Hypertrophy

Hyperplasia

Dysplasia

Metaplasia

Mechanisms of Injury

- Hypoxic
- Chemical
- Structural
 - (trauma...tons next semester!)
- Infectious
- Immunologic / Inflammatory

Hypoxic Injury

↓ Atmospheric Oxygen

Loss of Hb

↓ Hb function (CO)

U erythropoiesis

↓ Respiratory Function

↓ Cardiovascular Function

Most Common Cause of Cellular Injury!

Hypoxic Injury (pathway 1)

Hypoxic Injury (pathway 2)

Hypoxic Injury (pathway 2)

Hypoxic Injury (pathway 2)

↑ Lysosome Swelling

Release of
Lysosomal (Digestive)
Enzymes

Cellular Digestion (autodigestion)

Na⁺ K⁺ ATP pump

Chemical Injury

Pressure

Manifestations of Injury

Cellular Swelling

Cool
Graphics
To come!

Physiological Cell Death

Apoptosis

'Programmed Suicide'

Normal to process of cell Replacement & Development!

Balance between the "DO IT!" and "DON'T DO IT!" voices...

Necrotic Cell Death (pathological)

Firm Coagulative & opaque Walled-Off Liquefactive Liquid Goo 'Cased'-Off Caseous Cheese Globules Opaque, Chalky Fatty Soapy

Coagulative Necrosis - Kidney

Liquefactive Necrosis - brain

Caseous Necrosis

Typical of TB tubercule

Fatty Necrosis - pancreas

Cirrhosis of the liver

Gangrene

Caused by severe hypoxic injury

Dry Gangrene

Wet Gangrene 2° to diabetes

Web Resources

- Cell Membrane:
 - http://www.d.umn.edu/~sdowning/Membranes/lecturen otes.html#anchor360899
- Sodium Potassium ATP pump:
 - http://arbl.cvmbs.colostate.edu/hbooks/molecules/sodiu
 m pump.html
- Kimbal's Biology Page(s): You want it, he's got it!:
 - http://www.ultranet.com/~jkimball/BiologyPages/T/TO
 C.html

Web Resources

- Virtual Library of Cell Biology:
 - http://vl.bwh.harvard.edu/
- On-line pathophysiology course:
 - http://sonser4.nur.uth.tmc.edu/patho/